
 Supporting the Sound Description Interchange Format
in the Max/MSP Environment

Matthew Wright, Richard Dudas, Sami Khoury, Raymond Wang, David Zicarelli*
 CNMAT, UC Berkeley, {matt,dudas,khoury,raywang}@cnmat.berkeley.edu

* Cycling Õ74, zicarell@cycling74.com

We have added support for the Sound Description Interchange Format to the Max/MSP environ-
ment. We briefly introduce SDIF and Max/MSP, describe how SDIF data is represented in MSP
and how to write programs to manupulate SDIF data, and demonstrate example applications.

1. Introduction
Max/MSP (Puckette, 1988, Zicarelli, 1998) is a real-
time signal- and event-processing environment for
music. The Sound Description Interchange Format
(ÒSDIFÓ) is a framework for representing high-level
sound descriptions such as sum-of-sinusoids, noise
bands, time-domain samples, and formants (Wright,
et al., 1999, Wright, et al., 1998). Many of these
sound descriptions are mutable models, affording
operations such as filtering, morphing, pitch shifting,
and time stretching (Laroche, 1998). We describe
the situating of these models within an environment
that provides a variety of ways in which to do the
mutating.

2. Representing SDIF data in Max
SDIF data consists of time-tagged frames, each con-
taining one or more two-dimensional matrices of
data such as floating-point numbers and a frame type
ID indicating what kind of sound description the
frame represents. For example, an SDIF frame rep-
resenting additive synthesis data has a single matrix
where rows represent individual sinusoids and col-
umns represent parameters such as frequency, am-
plitude, and phase. A stream is a sequence of frames
of the same frame type that represents a single Òsonic
objectÓ evolving through time. An SDIF file may
contain one stream, or multiple streams with inter-
leaved frames. Each frame has a Stream ID, a
meaningless 32-bit number that uniquely identifies
the stream to which it belongs.

Unfortunately, Max/MSP's limited language of data
objects does not support SDIFÕs structure of matrices
within frames within streams. We circumvent this
limitation with an object called SDIF-buffer that

represents an SDIF stream in memory, analogous to
MSPÕs buffer~ object, which represents audio
samples in memory. This allows SDIF data to be
represented with C data structures. Each SDIF-
buffer has a symbolic name chosen by the Max
programmer.

One difference between SDIF and sound files is that
a single SDIF file can contain multiple sonic objects
in different streams. In our design an SDIF-buffer
holds a single SDIF stream. Therefore, to read SDIF
data, the user must specify both a file and a stream
within that file. To keep the user from having to type
Stream ID numbers, we provide a graphical tool,
shown in Figure 1, that displays information about
each stream in a given file, including the type of the
frames in the stream, the total number of frames, and
the times of the first and last frames. Clicking inside
this display selects a stream; this outputs a list con-
taining the name of the SDIF file and the appropriate
Stream ID.

MSP has objects that provide various control struc-
tures to read data from a buffer~ and output signals
or events usable by other Max/MSP objects, and
other objects that write data to a buffer~. By anal-
ogy, we have created ÒSDIF selectorÓ objects that
select data from an SDIF-buffer and shoehorn it
into a standard Max/MSP data type, and ÒSDIF mu-
tatorÓ objects that write new data into an SDIF-
buffer. We provide a header file that allows pro-
grammers to create new SDIF selectors and mutators
in C as Max external objects.

3. Applications
3.1. Resonance Synthesis
SDIFÕs resonance type consists of frequency, ampli-
tude, decay rate, and phase for any number of reso-
nances. This data may be interpreted as specifica-
tions for a collection of exponentially decaying sinu-
soids or as parameters for a parallel bank of resonant
filters. (These are equivalent because the impulse
response of the specified filter bank should be the
same as the specified collection of decaying sinu-
soids.)

Two MSP externals have been written at CNMAT to
perform resonance synthesis: resonators~ imple-
ments a parallel bank of resonant filters (Jehan, et al.,
1999) and decaying-sinusoids~ synthesizes a
collection of exponentially decaying sinusoids. Both

prepend set

read myfile.sdif

myfile.sdif 886020599

prepend read_stream

SDIF-buffer mybuffer

Figure 1: A graphical interface for selecting
a stream from an SDIF file

of these objects take their parameters as Max lists of
concatenated triples of frequency, gain, and decay
rate. For example, the list Ò100. .5 1. 200 .3 1.2Ó
specifies two resonances: 100 Hertz, gain .5, decay
rate 1., and 200 Hertz, gain .3, decay rate 1.2.

The SDIF selector SDIF-tuples outputs each row
of a particular matrix as a tuple containing the de-
sired columns. The ÒindividualÓ mode outputs each
row as a separate list, while the default ÒconcatenateÓ
mode concatenates all of the tuples into one large
list.

Figure 2 shows an example of live sound input ex-
citing a bank of resonant filters. The three SDIF-
buffers holding the gong, timpani, and tubular-bell
resonance models are not shown. Clicking on any of
the three message boxes first sets the SDIF-tuples
selector to the desired SDIF-buffer, then causes it
to output a concatenated list of triplets of columns 1,
2, and 3 from the SDIF matrix. (The resonators~
object does not support control of phase, the fourth
column of the SDIF resonance matrix.) Figure 3
shows the same collection of resonance models used
as inputs to decaying-sinusoids~.

3.2. Time-Domain Samples
SDIF has a frame type for time-domain samples.
Each column is a channel (e.g., left and right), and
each row is a sample frame. The SDIF selector
SDIF-extract-samples copies this sample data
from an SDIF-buffer into a buffer~, making it
available for use in the rest of MSP. Optional argu-
ments select a subset of the channels in the SDIF
stream.

3.3. Synthesizing F0 estimates
SDIF has a type to represent a time-varying funda-
mental frequency (ÒF0Ó) estimate. The rows are the
different estimates and the columns are the funda-
mental frequency (in Hertz) and a confidence factor
between 0 and 1. Obviously, there is not enough in-
formation to reconstruct an original signal from its
F0 envelope, but it can be useful to ÒsynthesizeÓ an
F0 envelope by applying it to an arbitrary synthe-
sized timbre, as shown in Figure 4.

Since an F0 envelope changes over time, we need a
control structure for moving through the time axis of
the SDIF stream. To replay the original F0 envelope
at the original speed, we start at time zero in the
SDIF stream and advance at the rate of one SDIF
second per real-time second. Of course we can ad-
vance our position in the SDIF stream in more inter-
esting ways for time-scale modification. We use the
term Òvirtual timeÓ to mean a time position in an
SDIF stream.

In Figure 4 we use MSPÕs line~ object to generate a
function of virtual time as it varies over ÒrealÓ time.
This particular F0 trajectory is two seconds long, so
to play it at normal speed we send the list Ò0 0. 2000
2.Ó to line~ so that it will generate a signal that
starts at zero and goes to two over 2000 millisec-
onds. (There is an SDIF selector called SDIF-info,
that outputs information about an SDIF-buffer

resonators~

SDIF-tuples

tuples columns 1 2 3adc~

prepend set

t b s

timpanigong tubular-bell

dac~

Figure 2: An SDIF-controlled resonant filter bank

decaying-sinusoids~

SDIF-tuples

tuples columns 1 2 3

prepend set

t b b s

timpanigong tubular-bell

0 .1

dac~

Figure 3: Synthesis of an SDIF resonance model
with exponentially decaying sinusoids

SDIF-tuples f0-envelope

best-F0

snapshot~ 10

phasor~

dac~

line~

0 0 2. 2000

0 0 2. 20000

t l b

selector~

0 1

tuples time $1

normal speed

1/10 speed

2. 0 0. 2000 backwards

Figure 4: ÒSynthesisÓ of a two-second fundamental
frequency envelope with time-scale modification

such as the times of the first and last frames; this
could be used instead of building the two second
length of this particular SDIF stream into the patch.)

By default, SDIF-tuples selects the frame whose
time tag is closest to zero, but the optional ÒtimeÓ
argument to the ÒtuplesÓ message asks SDIF-
tuples to find the frame closest to a given time.
The snapshot~ object samples the virtual time sig-
nal every 10 ms to produce a time value for SDIF-
tuples. The best-F0 subpatch (not shown) selects
the highest-confidence F0 estimate, which is passed
to phasor~ to generate a sawtooth wave at that fre-
quency. The selector~ object turns on the
sawtooth wave when we start and turns it off again
when the virtual time trajectory is complete. This
selector~ object could be replaced by a ramp at-
tenuation subpatch for click-free performance.

3.4. Interpolating SDIF selectors
When we slow down virtual time enough, the frame-
by-frame nature of the SDIF data starts to become
audible as frequency discontinuities. We can avoid
this problem by performing interpolation of the SDIF
data. By default, SDIF-tuples returns data from the
frame closest to the given time. The ÒinterpÓ argu-
ment causes interpolation along the time axis of the
SDIF stream. Given a desired virtual time, SDIF-
tuples finds the next earlier and next later frames
in the stream, and the ratio of the given time between
the times of the two frames. SDIF-tuples matches
each datum in the first frame with the corresponding
datum in the second, scales each by the appropriate
ratio, and adds them together to produce the result.

3.5. Additive Synthesis
SDIFÕs sinusoidal track type contains frequencies,
amplitudes, and phases for a collection of sinusoids
as they evolve over time. The first column is an Òin-

dex number,Ó used to identify each sinusoid so that it
can maintain its identity from frame to frame.

The easiest way to synthesize an arbitrary number of
sinusoids in Max/MSP is with CNMATÕs sinu-
soids~ object (Jehan, et al., 1999), which takes a
list of alternating frequencies and amplitudes for a
bank of sinusoids. (The sinusoids~ object does not
support control of phase.) Upon receipt of a new list,
the freqency and amplitude of each currently-
sounding sinusoid is interpolated smoothly from the
current value to the new value.

Figure 5 shows additive synthesis of SDIF sinusoidal
track data with the sinusoids~ object. When we
ask SDIF-tuples to use interpolation with sinusoi-
dal track data, it matches the sinusoids in each frame
based on their index numbers rather than their row
positions in the matrices.

3.6. More Sophisticated Control of Virtual Time
All the examples shown so far have used MSPÕs
line~ object to create a signal containing the in-
stantaneous virtual time. MSPÕs rich collection of
signal processing objects can be used to create and
modify these virtual time signals in interesting and
musically expressive ways, for example, phasor~
could be used for looping.

We have also written an external object called time-
machine~ that generates virtual time signals under
real-time control. This object is a reimplementation
of the CAST time machine (Freed and Wright, 1998)
and has the same features.

3.7. STFT Analysis/Synthesis
Transform-based algorithms are the commonly pre-
ferred solution for convolution, pitch analysis, and
additive synthesis. We use SDIFÕs frame type for
windowed Short Time Fourier Transform results to
realize a pair of spectral signal processing objects
(SDIF-stft~ and SDIF-istft~) for MSP.

Each object which processes STFT data has the
name of an SDIF-buffer as a first argument; it
writes its output to this SDIF-buffer and passes
the name via its outlet to subsequent objects that will
read from that SDIF-buffer. Thus, once an in-
coming audio signal has been buffered and trans-
formed, it can be processed in the SDIF domain
without needing to be re-buffered into an MSP audio
signal until it is inverse-transformed, thereby de-
creasing overall latency.

The MSP signal connections between the SDIF proc-
essing objects send a ÒsyncÓ signal that has the value
one when the objectÕs SDIF-buffer is ready to be
processed, and zero otherwise. Using a sync signal
keeps the processing of SDIF-buffers within
MSPÕs audio interrupt and causes MSPÕs signal
compiler to correctly order the execution of SDIF
processing. SDIF-stft~ and SDIF-istft~ per-
form windowing and frame overlap, so when the
overlap rate is high they communicate new buffers
more frequently.

SDIF-tuples sinewaves

tuples columns 2 3 time $1 interp

sinusoids~

snapshot~ 10

dac~

line~

0 0 2. 2000

0 0 2. 20000

t l b

selector~

0 1

normal speed

1/10 speed

2. 0 0. 2000 backwards

Figure 5: Additive synthesis of
SDIF sinusoidal track data

Figure 6 shows an example of frequency-domain
convolution using the SDIF-stft~, SDIF-istft~,
and SDIF-complex*~ objects.

3.8. Streaming SDIF
We have started to pursue Internet streaming appli-
cations of SDIF. Early results suggest that existing
streaming protocols such as the Real-time Transport
Protocol (ÒRTPÓ) (Schulzrinne, et al., 1996) and
Real Time Streaming Protocol (ÒRTSPÓ)
(Schulzrinne, et al., 1998) provide an adequate
framework for delivery of SDIF data, and support
multicasting. As research continues towards more
efficient and musically interesting streaming proto-
cols, Max/MSP interfaces will be implemented as
SDIF mutator objects that read incoming streamed
data and insert it in real time into an SDIF-buffer.

Our work is focused on streaming protocols carried
over TCP/IP and UDP, the two main transport proto-
cols used in the Internet. We have written two Max
external objects, OTUDP and OTTCP, that use AppleÕs
Open Transport networking architecture to send and
receive UDP packets and TCP streams, respectively.
These objects do not impose any particular protocol
on the data they transmit, so they can be used with
Open Sound Control, http, telnet, RTSP, etc.

3.9. Display of SDIF Data
Max/MSP can be used for graphical display of SDIF
data as well as modification and synthesis.

Resonance data can be displayed using special fea-
tures of the LCD object, as illustrated elsewhere in
these proceedings (Jehan, et al., 1999). The LCD
object can also be used to display F0 trajectories and
other parameters as a function of time. The LCD
object can also display time-varying data by updating
its display in real time; this is useful for spectral data

such as STFT results and frequencies and amplitudes
of sinusoids.

The Open Sound Edit (ÒOSEÓ) framework
(Chaudhary and Freed, 1999, Chaudhary, et al.,
1998) provides 3D graphical display and editing of
SDIF data. Max can communicate with OSE by
sending OpenSound Control (Wright and Freed,
1997) messages containing data from SDIF frames.
OSE is based on OpenGL, which currently runs on
the Macintosh (Apple, 1999). Work is underway to
port OSE to the Macintosh.

4. References
Apple (1999), ÒApple Ships OpenGL For MacintoshÓ
http://www.apple.com/pr/library/1999/may/10opengl.html

A. Chaudhary and A. Freed (1999), ÒVisualization, Editing
and Spatialization of Timbral Resources using the OSE
Framework,Ó proceedings of the Audio Engineering Soci-
ety 107th Convention.

A. Chaudhary, A. Freed, and L. A. Rowe (1998), ÒOpen-
SoundEdit: An Interactive Visualization and Editing
Framework for Timbral Resources,Ó proceedings of the
International Computer Music Conference, Ann, Arbor,
Michigan.

A. Freed and M. Wright (1998), ÒCNMAT's Additive
Synthesis Tools,Ó http://www.cnmat.berkeley.edu/CAST

T. Jehan, A. Freed, and R. Dudas (1999), ÒMusical Appli-
cations of New Filter Extensions to Max/MSP,Ó proceed-
ings of the ICMC, Beijing, China.

J. Laroche (1998), ÒTime and pitch scale modification of
audio signals,Ó in Applications of Signal Processing to
Audio and Acoustics, M. Kahrs and K. Brandenburg, Eds.
New York: Kluwer Academic, pp. 279-310.

M. Puckette (1988), ÒThe Patcher,Ó proceedings of the
Proceeings of the 14th International Computer Music Con-
ference, Koln.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson
(1996), ÒRFC 1889: RTP: A Transport Protocol for Real-
Time ApplicationsÓ http://www.faqs.org/rfcs/rfc1889.html

H. Schulzrinne, A. Rao, and R. Lanphier (1998), ÒRFC
2326: Real Time Streaming Protocol (RTSP)Ó
http://www.faqs.org/rfcs/rfc2326.html

M. Wright, A. Chaudhary, A. Freed, S. Khoury, and D.
Wessel (1999), ÒAudio Applications of the Sound De-
scription Interchange Format Standard,Ó proceedings of the
Audio Engineering Society 107th Convention.

M. Wright, A. Chaudhary, A. Freed, D. Wessel, X. Rodet,
D. Virolle, R. Woehrmann, and X. Serra (1998), ÒNew
Applications of the Sound Description Interchange For-
mat,Ó proceedings of the International Computer Music
Conference, Ann, Arbor, Michigan.

M. Wright and A. Freed (1997), ÒOpen Sound Control: A
New Protocol for Communicating with Sound Synthesiz-
ers,Ó proceedings of the International Computer Music
Conference, Thessaloniki, Hellas.

D. Zicarelli (1998), ÒAn Extensible Real-Time Signal
Processing Environment for Max,Ó proceedings of the
International Computer Music Conference, Ann Arbor,
Michigan.

args:

<- sync signals ->

SDIF-istft~

SDIF-stft~ source1 512 256

sfplay~

open

SDIF-buffer source1

SDIF-buffer source2

SDIF-buffer convolution

SDIF-stft~ source2 512 256

SDIF-complex*~ convolution

<- sync signal

SDIF-buffer (name)
FFT size (512)
hop size (256)

adc~

Figure 6: Low-latency convolution using SDIF

