

MUSICAL APPLICATIONS OF NESTED COMB FILTERS
FOR INHARMONIC RESONATOR EFFECTS

Jae hyun Ahn Richard Dudas
Center for Research in Electro-Acoustic Music and Audio (CREAMA)

Hanyang University School of Music
222 Wangsimni-ro Seongdong-gu

133-791 Seoul, South Korea

ABSTRACT

The comb filter is one of the basic building blocks in the
world of digital filtering and signal processing, and an
important component in a wide variety of musical and
non-musical applications ranging from anti-aliasing of
images and video to the design of numerous traditional
audio effects. This paper describes a technique of using
nested comb filter structures in order to design
computationally stable inharmonic resonator effects with
dynamically modifiable parameters. The number of
parameters has additionally been kept to a minimum so
that our inharmonic comb resonators can be easily and
intuitively controlled for musical purposes. The comb
filter implementations shown in this paper make use of
new features of the Max/MSP 6 graphical programming
environment, which allow both a more straightforward
modification of and greater control over the low-level
design of the comb filter algorithms themselves.

1. INTRODUCTION

The aim of this project was to provide users with a
simple, easy-to-use inharmonic comb filter resonator
effect that can be used for creative musical purposes.
One important aspect in developing this effect was to
explore comb filter design from a pedagogical point of
view before embarking on the modification of
traditional comb filter structures. Therefore, we decided
to first create re-implementations of traditional comb
filters alongside our final inharmonic comb filter, and
provide them to users within the Max/MSP
environment, making use of the gen~ object in Max 6.
Naturally, the algorithms we present could also easily be
rewritten for other signal processing languages and/or
environments.

2. AN OVERVIEW OF COMB FILTERS

Comb filters are common tools in many realms of signal
processing, from their use in television and
telecommunications to their central role in many audio
effects. Alongside other related filters, such as CIC
(Cascaded Integrator Comb) filters (used extensively in
analog to digital conversion), IIR (Infinite Impulse
Response) filters and allpass filters, comb filters are not
necessarily always used by themselves for musical
purposes (although they can be), but are often integrated
into more elaborate algorithms or used alongside other
comb filters within larger signal processing applications.
Such applications can range from simple audio effect
scenarios such as echoes, chorus and flanging, to more

complex realms of signal processing for artificial
reverberation and physical modeling synthesis [6].

Although there are a wide variety of filter
topographies for the internal structure of comb filters,
and consequently just as many equations to describe
them, they generally exist in two basic forms — feed-
forward and feedback — which can either be used
independently or merged together. When combined, the
filters can either share a delay line, or be provided with
separate delay lines (with independent delay times) for
both the feed-forward and feedback stages.

2.1. Feed-Forward Comb Filters

A feed-forward comb filter delays the original input
signal and sums it with the non-delayed signal at the
output. The feed-forward coefficient, used directly as a
multiplier for the delayed signal, can be used to create
evenly-spaced notches in the output sound’s spectrum,
which become more pronounced as the coefficient nears
unity gain. When this coefficient is negative, these
notches start at DC and are spaced at harmonics of the
frequency that corresponds to the delay time; when the
coefficient is positive the notches occur at odd
harmonics of half that frequency (thus creating an odd-
harmonic spectrum one octave lower). Both cases are
shown in figure 1.

Figure 1. Frequency Response of a feed-forward comb
filter for both positive (top) and negative (bottom)
coefficient values and a delay time corresponding to a
frequency of 2kHz (22.05 samples at a 44.1kHz SR).

The difference equation for a feed-forward comb
filter (where a is the coefficient for the direct signal
gain, b is the feed-forward coefficient and M is the delay
time in samples) is:

€

y(n) = ax(n) + bx(n −M) (1)

2.2. Feedback Comb Filters

A feedback comb filter has its delayed signal re-injected
to a summing point just after the input and before the
delay. The feedback coefficient (in this case used
directly as a multiplier)1 can be used to create peaks in
the output sound’s spectrum. In most implementations,
when the feedback coefficient is positive these peaks
start at DC and are evenly spaced at harmonics of the
frequency corresponding to the delay time, and when
the coefficient is negative the peaks occur at odd
harmonics of half this frequency (once again outlining
an odd-harmonic spectrum one octave lower), as shown
in figure 2.

Figure 2. Frequency Response of a feedback comb
filter for positive (top) and negative (bottom)
coefficient values and a delay time corresponding to a
frequency of 2kHz (22.05 samples at a 44.1kHz SR).

The difference equation for a feedback comb filter
(where a is the coefficient for the direct signal gain, c is
the sign-inverted feedback coefficient and M is the delay
time in samples) is:

€

y(n) = ax(n) − cy(n −M) (2)

2.3. Combined Comb Filter

The feed-forward and feedback comb filters can be
combined together to form the standard comb filter
found in most audio processing toolkits, whose signal
flow block diagram is shown in figure 3. By combining
the two we can obtain clearer peaks when the feed-
forward and feedback coefficients are both positive or
both negative, resulting in a harmonic comb spectrum
when the coefficients are positive, or an odd-harmonic
comb spectrum an octave lower when the coefficients
are negative. Additionally, if the two coefficients have
identical values with the opposite sign, the comb filter
functions as an allpass filter, since the peaks and notches

1 Most IIR comb filter implementations, including the ones shown

here, invert the sign of the feedback coefficient, although some may
not [7]. Inverting the sign of the coefficient means that the scaled
feedback will be added to the direct signal, instead of being
subtracted, as feedback generally is within digital filter algorithms.

cancel each other out in amplitude. Naturally, in this
case the filter’s phase response remains complex.

Figure 3. Block diagram for a standard comb filter
combining feed-forward and feedback delays.

By rearranging the topography of the comb filter
shown in figure 3 to use one shared delay that functions
for both feed-forward and feedback, we can create a
canonical comb filter similar in structure to Schroeder’s
allpass [1]. Although this topography, shown in figure 4,
is not mathematically identical to the two-delay filter it
is nonetheless equivalent and therefore produces the
same filtering results as the comb filter with two delays
shown in figure 3.

Figure 4. Block diagram for a canonical comb filter –
this is an equivalent filter to that shown in figure 3,
although its topography has been rearranged to share
the delay line.

The filters shown in both of these signal flow
diagrams can be described with following difference
equation:

€

y(n) = ax(n) + bx(n −M) − cy(n −M) (3)

It is worth noting that although many delay-based
signal processing algorithms can be designed with either
separate or shared delays, and can have their feed-
forward placed either before or after the feedback loop,
they are not always optimal for audio processing in all
their forms [2]. In the case of the comb filter, both the
two-delay and one-delay topographies shown here can
be safely used for audio processing.

2.4. Allpass Lattice Filters

Allpass lattice filters, commonly used in waveguide-
based physical modeling synthesis [8], have a similar
signal flow structure to comb filters, albeit with a one-
sample delay. Conveniently, a single coefficient, k, is
used (converted into both positive and negative values
for use within the algorithm) to control the phase
response of the allpass filter. A first-order lattice section
— not altogether very different in topography from the
canonical comb filter presented above — is shown in
figure 5.

Figure 5. Block diagram for a direct form II first-order
allpass lattice filter section.

Such first-order allpass filter sections can then be
cascaded or nested (depending on the filter topography
desired and/or the purpose for which they will be used)
to produce higher order allpass lattice filters. A nested
second order lattice filter is shown in figure 6. It is this
nested structure that served as a starting point for our
experimentation with nested comb filters. Note that the
“inner” filter in the block diagram (highlighted with a
dashed border) is nested in such a way that it
simultaneously affects both the feed-forward and the
feedback in the algorithm. Nested allpass structures used
in other contexts, such as those used in some
reverberation algorithms [3] are placed analogously.

Figure 6. Block Diagram for a nested direct form II
second-order allpass lattice filter.

3. REBUILDING COMB~ WITH GEN~

The Max/MSP environment comes with two standard
comb filter objects integrated into the environment:
comb~ and teeth~. The former is the classic comb filter
effect, whose feed-forward and feedback delay lines are
of equal lengths, whereas the latter allows different
delay times for its feed-forward and feedback delay
lines. These objects serve their function well, although
they cannot be easily modified since they are compiled
objects. The new gen~ object in Max 6 provides an
environment of low-level signal processing tools that
allow users to build their own recursive filters, delays,
spectral processors, and sound generators (using 64-bit
floating-point internal precision) in the same way as
they would build a signal processing patch [10]. The
advantage to the gen~ object is that the patch created
inside it is compiled into efficient DSP code and
therefore can be used to build a filter entirely identical
to comb~ or teeth~.

Figure 7. Max/MSP gen~ patch re-implementing the
comb~ object. Note that the inlets are ordered slightly
differently than those of the actual object and that we
calculate the delay time in samples (based on a given
frequency value) outside of this gen~ patch.

As a starting point, we built gen~ implementations of
comb~ and teeth~ (both of which are a combination of a
feed-forward and a feedback comb filter). The gen~
patch implementing comb~ is shown in figure 7; the
implementation for teeth~ simply contains an extra inlet
in order to be able to set the two delay times with
different values. Comparing figures 3 and 7 you will
notice that the gen~ patch representation actually
slightly resembles the block diagram it implements.

Using gen~ also enabled us to build and test an
equivalent version of comb~ using a shared delay
topography, shown in figure 8. Again, it is useful to
compare this implementation with its block diagram in
figure 4.

Figure 8. Max/MSP gen~ patch implementing a comb
filter with a shared delay line.

By having a version of a basic comb filter (or any
other object) in gen~, we can easily modify and extend
it in unconventional ways. It occurred to us that nesting
a comb filter inside the feedback loop of another comb
filter, in much the same way that lattice filters can be
nested, as mentioned above, could potentially produce
interesting sonic results.

4. A NESTED COMB FILTER

It has already been shown that by inserting a
meticulously designed high order allpass filter into the
feedback loop of different types of resonator algorithms,
“designer spectra” can be obtained [4] [5] [9]. This
technique has been primarily used in the domain of
physical modeling synthesis using digital waveguides.
Nested Schroeder allpass structures have also been used
successfully within reverberation algorithms alongside
cascaded structures, in order to reduce unnatural sound
coloration produced by the feedback loop(s) which
simulate late reverberation [3].

4.1. Designing the Filter Algorithm

We initially discovered that we could obtain some
interesting sonic results by nesting one comb filter
within the feedback loop of another, or nesting two
canonical comb filters in a way that resembled the
Nested Direct Form II second-order lattice filters —
whereby the inner comb filter is inserted into the signal
chain just after the shared delay of the outer comb filter.
However, many of our attempts at nesting filters
required quite precise coefficient settings to work, as the
resulting filter was often highly unstable and easily
susceptible to “blowing up,” especially when changing
either of the two delay times. After empirically
experimenting with some different filter topographies
(one of the main advantages to using gen~ for this is that
we can more easily visualize the signal flow than we
could with text-based code), we discovered that we
could obtain a stable filter structure by doing three
things: 1) having equal and opposite multipliers for the
inner (i.e., nested) comb filter, 2) having a shared
multiplier for both the feed-forward and feedback loops
of the outer comb filter, and 3) placing the inner
(nested) filter after this multiplier. The use of equal and
opposite multipliers for the inner comb filter renders it
an allpass comb filter controlled by one coefficient,
similar to the first order lattice filter, albeit with a multi-
sample delay. The shared feed-forward/feedback
multiplier for the outer filter simplifies controlling the
resonant peaks of the comb. Finally, the placement of
the inner filter means that it will affect both the feed-
forward and feedback loops of the outer filter. The
resulting comb filter is computationally stable and
allows musically intuitive morphing between two sets of
comb filters, passing through inharmonic spectra when
moving between them.

Figure 9. Block diagram showing the stable nested
comb filter structure.

A signal flow block diagram for our nested comb
filter is shown in figure 9. It can be described by the
following set of difference equations, where v(n) is an
intermediary calculation representing the point before
the entry into the first delay, w(n) is the output point of
the inner nester allpass comb, and the inner and outer
delay lines have the lengths M and N, respectively:

€

v(n) = x(n) + cw(n)
w(n) = kv(n − N) + b(n − (M + N)) − kw(n −M)
y(n) = cw(n) + gv(n)

(4)

 From a user’s point of view, one important
advantage to the nested comb filter topography we are
using is that the number of coefficients is greatly
reduced, providing control parameters not more
complex than that of the teeth~ object (three coefficients
and two delay times). Furthermore, and perhaps most
importantly, there is a simple correlation between
coefficient changes and audible results. The Max/MSP
gen~ patch for this filter is shown in figure 10.

Figure 10. Max/MSP gen~ patch implementing the
nested comb~ filter structure shown in figure 8. The
delay times (in samples) are calculated outside this
patch, based on two given frequencies.

The equivalent text-based code (which could be used
directly in a codebox object within the gen~ patch) to
describe the algorithm shown in figure 10 is as follows:

Delay delay_1(44100);
Delay delay_2(44100);
tap_3 = delay_1.read(in6);
mul_4 = in4 * -1.;
mul_5 = tap_3 * mul_4;
tap_6 = delay_2.read(in5);
mul_7 = tap_6 * in3;
add_8 = mul_7 + mul_5;
mul_9 = add_8 * in4;
add_10 = mul_9 + tap_3;
add_11 = in1 + add_10;
mul_12 = add_11 * in2;
add_13 = mul_12 + add_10;
out1 = add_13;
delay_1.write(add_8);
delay_2.write(add_11);

4.2. Results of the Filter Algorithm

This nested comb filter can produce two sets of equally
spaced peaks based on frequencies corresponding to the
delay time of the outer comb filter, and the sum of the
delay time of both delay lines. Therefore, given any two
desired principal resonant frequencies, f1 and f2, for the
combs, the two delay times for the nested delay lines
can be calculated as follows:

€

del1 =
SR

max(f1, f2)

del2 =
SR
f1
−
SR
f2

 (5)

Of our two resulting delay times, del1 becomes the
delay time in samples which used for the outer filter,
and del2 becomes the delay time in samples used for the
inner (nested) filter. Presuming our input gain
coefficient g is set to 1 and our k coefficient is set to 0,
the c coefficient controls the peaks based on the lower
of the two given frequencies (i.e., the frequency
corresponding to the sum of both the delay times). If c is
positive, the spectrum is harmonic, if it is negative, the
spectrum is an odd-harmonic spectrum of half that
frequency.

The coefficient k controls the multipliers for the inner
(nested) comb filter (used here as an allpass) and can be
varied between the limits of -1 to 1 (exclusive). It acts as
an interpolator for the peaks of the comb filter as a
whole. Presuming unity input gain and a positive value
for c, if the value of k is zero the peaks are spaced at a
frequency corresponding to the sum of the two delay
times in samples (the lower of the two given
frequencies). When k is near 1, the peaks are spaced in a
harmonic spectrum at a frequency corresponding to the
delay time of the outer comb filter (the higher of the two
given frequencies); when k is near -1, the peaks are
spaced in an odd harmonic spectrum half that frequency.
If the c coefficient is negative the behaviour of the k
coefficient will be inverted.

Figure 11. Frequency response of the inharmonic
comb filter using delays corresponding to 2000Hz and
1470Hz, with g=1 and c=0.999. This graph shows
positive and negative values for the interpolation
coefficient: k=0.8 (top) and k=–0.8 (bottom).

Dynamically changing k causes the peaks to be both
interpolated and cross-faded continuously from one
comb spectrum to the other, producing inharmonic
spectra similar to those obtained by frequency-shifting;
it is in this region where the nested comb filter becomes
most interesting, musically-speaking. An example
frequency response for both positive and negative
values of k is shown in figure 11.

The inharmonicity of the nested comb filter is
naturally contingent upon the choice of frequency
values as well as the value of k (see figure 12). In order
to achieve a more linear perception of the interpolation
between comb sets, we can use an arctangent function to
compute k from a given linear value l between -1 and 1:

€

1 > x ≥ 0 : k = arctan l2 ⋅ tan(1)()
0 < x < −1: k = −arctan l2 ⋅ tan(1)()

 (6)

Figure 12. A representative inharmonic frequency
response of the nested comb filter using delays
calculated from the resonant frequencies 880Hz (A)
and 370Hz (F#), with g=1 and c=–0.999 and k=0.743.

4.3. Additional Nested Filters

Although we did experiment with additional levels of
nested filters, the results we obtained did not seem to
offer any significant musical advantage over the nested
pair of filters described above, neither in terms of
interesting sonic results, nor computational stability
during quick parameter changes. So, although this could
be an interesting idea to explore at some point in the
future, it did not seem to warrant our continuing in that
direction at this time. Nevertheless, it goes without
saying that more complex combinations of inharmonic
resonators could be created by combining and arranging
several of these singly-nested inharmonic comb filters in
series or in parallel.

5. USES OF INHARMONIC COMB FILTERS

The nested “inharmonic comb filter” described here can
be used in almost any context where regular harmonic
comb filters are used. However they are particularly
useful when used as resonator effects alongside
percussion instruments, or “concrète” sound recordings
of metallic objects. The main advantage of our nested
comb filter structure is that it can be used to
dynamically and stably interpolate between harmonic,
odd-harmonic and inharmonic spectra, thereby easily
and intuitively allowing musicians to “morph” between
different sets of resonant timbres which can be defined
by two predominant pitches within the context of a real-
time performance situation.

We have already tested out our inharmonic comb
filter in concert, in the context of a percussion piece by
one of the authors, in order to provide inharmonic
pitched resonance to the sound of predominantly non-
pitched percussion instruments. We are providing
information about this filter to the musical community in
the form of a set of example patches in the Max/MSP
environment and would like to encourage others to
experiment with its use in creative contexts when it
subjectively seems like it could be an appropriate tool
for the musical task at hand.

6. CONCLUSION AND FUTURE WORK

This is an ongoing project, and we hope to develop
other useful extensions of this filter in the future. From a
composer’s perspective, it would be nice to be able to
provide a list of frequencies and be able to calculate the
appropriate delay times and coefficients for a closely-
matched inharmonic comb filter, instead of resorting to
selecting the parameters empirically or by trial and
error. In addition to the gen~ patches, we have also
already created a preliminary version of the inharmonic
comb filter as a standard compiled Max/MSP object.
We are currently working on improving this object and
enlarging our set of practical musical examples
demonstrating this filter, in order to distribute them
together with the gen~ patch shown above.

7. REFERENCES

[1] Cipriani, A., Giri, M., Musica Elettronica e
Sound Design, Teoria e Pratica con Max e
MSP, Volume 2, ConTempoNet s.a.s., Rome,
Italy, 2013.

[2] Dattorro, J., “The Implementation of Recursive
Filters for High-Fidelity Audio,” Journal of the
Audio Engineering Society, Vol. 36, No. 11,
New York, NY, USA, 1988.

[3] Gardner, B., “A Realtime Multichannel Room
Simulator,” Journal of the Acoustical Society of
America, Vol. 92, Issue 4, NY, USA, 1992.

[4] Jaffe, D. A., Smith, J. O., “Extensions of the
Karplus-Strong Plucked-String Algorithm,”
Computer Music Journal, Vol. 7, No. 2, MIT
Press, Cambridge, MA, USA, 1983.

[5] Karjalainen, M., Välimäki, V., Esquef, P. A.
A., “Efficient Modeling and Synthesis of Bell-
Like Sounds,” Proceedings of the 5th
International Conference on Digital Audio
Effects, Hamburg, Germany, 2002.

[6] Roads, C., The Computer Music Tutorial, MIT
Press, Cambridge, MA, USA, 1995.

[7] Smith, J. O., Introduction to Digital Filters
with Audio Applications, W3K Publishing,
USA, 2007.

[8] Smith, J. O., Physical Audio Signal Processing
for Virtual Musical Instruments and Digital
Audio Effects, W3K Publishing, USA, 2010.

[9] Van Duyne, S., Smith, J. O., “A Simplified
Approach to Modeling Dispersion Caused by
Stiffness in Strings and Plates,” Proceedings of
the 1994 International Computer Music
Conference, Århus, Denmark, 1994.

[10] …, Max 6 Reference Manual, Cycling ’74, San
Francisco, California, USA, 2011.

