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ABSTRACT 

The comb filter is one of the basic building blocks in the 
world of digital filtering and signal processing, and an 
important component in a wide variety of musical and 
non-musical applications ranging from anti-aliasing of 
images and video to the design of numerous traditional 
audio effects. This paper describes a technique of using 
nested comb filter structures in order to design 
computationally stable inharmonic resonator effects with 
dynamically modifiable parameters. The number of 
parameters has additionally been kept to a minimum so 
that our inharmonic comb resonators can be easily and 
intuitively controlled for musical purposes. The comb 
filter implementations shown in this paper make use of 
new features of the Max/MSP 6 graphical programming 
environment, which allow both a more straightforward 
modification of and greater control over the low-level 
design of the comb filter algorithms themselves. 

1. INTRODUCTION 

The aim of this project was to provide users with a 
simple, easy-to-use inharmonic comb filter resonator 
effect that can be used for creative musical purposes. 
One important aspect in developing this effect was to 
explore comb filter design from a pedagogical point of 
view before embarking on the modification of 
traditional comb filter structures. Therefore, we decided 
to first create re-implementations of traditional comb 
filters alongside our final inharmonic comb filter, and 
provide them to users within the Max/MSP 
environment, making use of the gen~ object in Max 6. 
Naturally, the algorithms we present could also easily be 
rewritten for other signal processing languages and/or 
environments. 

2. AN OVERVIEW OF COMB FILTERS 

Comb filters are common tools in many realms of signal 
processing, from their use in television and 
telecommunications to their central role in many audio 
effects. Alongside other related filters, such as CIC 
(Cascaded Integrator Comb) filters (used extensively in 
analog to digital conversion), IIR (Infinite Impulse 
Response) filters and allpass filters, comb filters are not 
necessarily always used by themselves for musical 
purposes (although they can be), but are often integrated 
into more elaborate algorithms or used alongside other 
comb filters within larger signal processing applications. 
Such applications can range from simple audio effect 
scenarios such as echoes, chorus and flanging, to more 

complex realms of signal processing for artificial 
reverberation and physical modeling synthesis [6]. 

Although there are a wide variety of filter 
topographies for the internal structure of comb filters, 
and consequently just as many equations to describe 
them, they generally exist in two basic forms — feed-
forward and feedback — which can either be used 
independently or merged together. When combined, the 
filters can either share a delay line, or be provided with 
separate delay lines (with independent delay times) for 
both the feed-forward and feedback stages. 

2.1. Feed-Forward Comb Filters 

A feed-forward comb filter delays the original input 
signal and sums it with the non-delayed signal at the 
output. The feed-forward coefficient, used directly as a 
multiplier for the delayed signal, can be used to create 
evenly-spaced notches in the output sound’s spectrum, 
which become more pronounced as the coefficient nears 
unity gain. When this coefficient is negative, these 
notches start at DC and are spaced at harmonics of the 
frequency that corresponds to the delay time; when the 
coefficient is positive the notches occur at odd 
harmonics of half that frequency (thus creating an odd-
harmonic spectrum one octave lower). Both cases are 
shown in figure 1.  

 
Figure 1. Frequency Response of a feed-forward comb 
filter for both positive (top) and negative (bottom) 
coefficient values and a delay time corresponding to a 
frequency of 2kHz (22.05 samples at a 44.1kHz SR). 

The difference equation for a feed-forward comb 
filter (where a is the coefficient for the direct signal 
gain, b is the feed-forward coefficient and M is the delay 
time in samples) is:  
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y(n) = ax(n) + bx(n −M)                   (1)  

2.2. Feedback Comb Filters 

A feedback comb filter has its delayed signal re-injected 
to a summing point just after the input and before the 
delay. The feedback coefficient (in this case used 
directly as a multiplier)1 can be used to create peaks in 
the output sound’s spectrum. In most implementations, 
when the feedback coefficient is positive these peaks 
start at DC and are evenly spaced at harmonics of the 
frequency corresponding to the delay time, and when 
the coefficient is negative the peaks occur at odd 
harmonics of half this frequency (once again outlining 
an odd-harmonic spectrum one octave lower), as shown 
in figure 2. 

 
Figure 2. Frequency Response of a feedback comb 
filter for positive (top) and negative (bottom) 
coefficient values and a delay time corresponding to a 
frequency of 2kHz (22.05 samples at a 44.1kHz SR). 

The difference equation for a feedback comb filter 
(where a is the coefficient for the direct signal gain, c is 
the sign-inverted feedback coefficient and M is the delay 
time in samples) is:  
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y(n) = ax(n) − cy(n −M)                   (2) 

2.3. Combined Comb Filter 

The feed-forward and feedback comb filters can be 
combined together to form the standard comb filter 
found in most audio processing toolkits, whose signal 
flow block diagram is shown in figure 3. By combining 
the two we can obtain clearer peaks when the feed-
forward and feedback coefficients are both positive or 
both negative, resulting in a harmonic comb spectrum 
when the coefficients are positive, or an odd-harmonic 
comb spectrum an octave lower when the coefficients 
are negative. Additionally, if the two coefficients have 
identical values with the opposite sign, the comb filter 
functions as an allpass filter, since the peaks and notches 

                                                           
1 Most IIR comb filter implementations, including the ones shown 

here, invert the sign of the feedback coefficient, although some may 
not [7]. Inverting the sign of the coefficient means that the scaled 
feedback will be added to the direct signal, instead of being 
subtracted, as feedback generally is within digital filter algorithms. 

cancel each other out in amplitude. Naturally, in this 
case the filter’s phase response remains complex.  

 
Figure 3. Block diagram for a standard comb filter 
combining feed-forward and feedback delays. 

By rearranging the topography of the comb filter 
shown in figure 3 to use one shared delay that functions 
for both feed-forward and feedback, we can create a 
canonical comb filter similar in structure to Schroeder’s 
allpass [1]. Although this topography, shown in figure 4, 
is not mathematically identical to the two-delay filter it 
is nonetheless equivalent and therefore produces the 
same filtering results as the comb filter with two delays 
shown in figure 3.  

 
Figure 4. Block diagram for a canonical comb filter – 
this is an equivalent filter to that shown in figure 3, 
although its topography has been rearranged to share 
the delay line. 

The filters shown in both of these signal flow 
diagrams can be described with following difference 
equation:  
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y(n) = ax(n) + bx(n −M) − cy(n −M)         (3) 

It is worth noting that although many delay-based 
signal processing algorithms can be designed with either 
separate or shared delays, and can have their feed-
forward placed either before or after the feedback loop, 
they are not always optimal for audio processing in all 
their forms [2]. In the case of the comb filter, both the 
two-delay and one-delay topographies shown here can 
be safely used for audio processing. 

2.4. Allpass Lattice Filters 

Allpass lattice filters, commonly used in waveguide-
based physical modeling synthesis [8], have a similar 
signal flow structure to comb filters, albeit with a one-
sample delay. Conveniently, a single coefficient, k, is 
used (converted into both positive and negative values 
for use within the algorithm) to control the phase 
response of the allpass filter. A first-order lattice section 
— not altogether very different in topography from the 
canonical comb filter presented above — is shown in 
figure 5. 



  
 

 

 
Figure 5. Block diagram for a direct form II first-order 
allpass lattice filter section. 

Such first-order allpass filter sections can then be 
cascaded or nested (depending on the filter topography 
desired and/or the purpose for which they will be used) 
to produce higher order allpass lattice filters. A nested 
second order lattice filter is shown in figure 6. It is this 
nested structure that served as a starting point for our 
experimentation with nested comb filters. Note that the 
“inner” filter in the block diagram (highlighted with a 
dashed border) is nested in such a way that it 
simultaneously affects both the feed-forward and the 
feedback in the algorithm. Nested allpass structures used 
in other contexts, such as those used in some 
reverberation algorithms [3] are placed analogously. 

 
Figure 6. Block Diagram for a nested direct form II 
second-order allpass lattice filter. 

3.  REBUILDING COMB~ WITH GEN~ 

The Max/MSP environment comes with two standard 
comb filter objects integrated into the environment: 
comb~ and teeth~. The former is the classic comb filter 
effect, whose feed-forward and feedback delay lines are 
of equal lengths, whereas the latter allows different 
delay times for its feed-forward and feedback delay 
lines. These objects serve their function well, although 
they cannot be easily modified since they are compiled 
objects. The new gen~ object in Max 6 provides an 
environment of low-level signal processing tools that 
allow users to build their own recursive filters, delays, 
spectral processors, and sound generators (using 64-bit 
floating-point internal precision) in the same way as 
they would build a signal processing patch [10]. The 
advantage to the gen~ object is that the patch created 
inside it is compiled into efficient DSP code and 
therefore can be used to build a filter entirely identical 
to comb~ or teeth~.  

 
Figure 7. Max/MSP gen~ patch re-implementing the 
comb~ object. Note that the inlets are ordered slightly 
differently than those of the actual object and that we 
calculate the delay time in samples (based on a given 
frequency value) outside of this gen~ patch. 

As a starting point, we built gen~ implementations of 
comb~ and teeth~ (both of which are a combination of a 
feed-forward and a feedback comb filter). The gen~ 
patch implementing comb~ is shown in figure 7; the 
implementation for teeth~ simply contains an extra inlet 
in order to be able to set the two delay times with 
different values. Comparing figures 3 and 7 you will 
notice that the gen~ patch representation actually 
slightly resembles the block diagram it implements.  

Using gen~ also enabled us to build and test an 
equivalent version of comb~ using a shared delay 
topography, shown in figure 8. Again, it is useful to 
compare this implementation with its block diagram in 
figure 4. 

 
Figure 8. Max/MSP gen~ patch implementing a comb 
filter with a shared delay line.  

By having a version of a basic comb filter (or any 
other object) in gen~, we can easily modify and extend 
it in unconventional ways. It occurred to us that nesting 
a comb filter inside the feedback loop of another comb 
filter, in much the same way that lattice filters can be 
nested, as mentioned above, could potentially produce 
interesting sonic results. 



  
 

 

4. A NESTED COMB FILTER 

It has already been shown that by inserting a 
meticulously designed high order allpass filter into the 
feedback loop of different types of resonator algorithms, 
“designer spectra” can be obtained [4] [5] [9]. This 
technique has been primarily used in the domain of 
physical modeling synthesis using digital waveguides. 
Nested Schroeder allpass structures have also been used 
successfully within reverberation algorithms alongside 
cascaded structures, in order to reduce unnatural sound 
coloration produced by the feedback loop(s) which 
simulate late reverberation [3].  

4.1. Designing the Filter Algorithm 

We initially discovered that we could obtain some 
interesting sonic results by nesting one comb filter 
within the feedback loop of another, or nesting two 
canonical comb filters in a way that resembled the 
Nested Direct Form II second-order lattice filters — 
whereby the inner comb filter is inserted into the signal 
chain just after the shared delay of the outer comb filter. 
However, many of our attempts at nesting filters 
required quite precise coefficient settings to work, as the 
resulting filter was often highly unstable and easily 
susceptible to “blowing up,” especially when changing 
either of the two delay times. After empirically 
experimenting with some different filter topographies 
(one of the main advantages to using gen~ for this is that 
we can more easily visualize the signal flow than we 
could with text-based code), we discovered that we 
could obtain a stable filter structure by doing three 
things: 1) having equal and opposite multipliers for the 
inner (i.e., nested) comb filter, 2) having a shared 
multiplier for both the feed-forward and feedback loops 
of the outer comb filter, and 3) placing the inner 
(nested) filter after this multiplier. The use of equal and 
opposite multipliers for the inner comb filter renders it 
an allpass comb filter controlled by one coefficient, 
similar to the first order lattice filter, albeit with a multi-
sample delay. The shared feed-forward/feedback 
multiplier for the outer filter simplifies controlling the 
resonant peaks of the comb. Finally, the placement of 
the inner filter means that it will affect both the feed-
forward and feedback loops of the outer filter. The 
resulting comb filter is computationally stable and 
allows musically intuitive morphing between two sets of 
comb filters, passing through inharmonic spectra when 
moving between them. 

 
Figure 9. Block diagram showing the stable nested 
comb filter structure. 

A signal flow block diagram for our nested comb 
filter is shown in figure 9. It can be described by the 
following set of difference equations, where v(n) is an 
intermediary calculation representing the point before 
the entry into the first delay, w(n) is the output point of 
the inner nester allpass comb, and the inner and outer 
delay lines have the lengths M and N, respectively:  
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v(n) = x(n) + cw(n)
w(n) = kv(n − N) + b(n − (M + N)) − kw(n −M)
y(n) = cw(n) + gv(n)

(4) 

 From a user’s point of view, one important 
advantage to the nested comb filter topography we are 
using is that the number of coefficients is greatly 
reduced, providing control parameters not more 
complex than that of the teeth~ object (three coefficients 
and two delay times). Furthermore, and perhaps most 
importantly, there is a simple correlation between 
coefficient changes and audible results. The Max/MSP 
gen~ patch for this filter is shown in figure 10. 

 
Figure 10. Max/MSP gen~ patch implementing the 
nested comb~ filter structure shown in figure 8. The 
delay times (in samples) are calculated outside this 
patch, based on two given frequencies. 

The equivalent text-based code (which could be used 
directly in a codebox object within the gen~ patch) to 
describe the algorithm shown in figure 10 is as follows:  

 
Delay delay_1(44100); 
Delay delay_2(44100); 
tap_3 = delay_1.read(in6); 
mul_4 = in4 * -1.; 
mul_5 = tap_3 * mul_4; 
tap_6 = delay_2.read(in5); 
mul_7 = tap_6 * in3; 
add_8 = mul_7 + mul_5; 
mul_9 = add_8 * in4; 
add_10 = mul_9 + tap_3; 
add_11 = in1 + add_10; 
mul_12 = add_11 * in2; 
add_13 = mul_12 + add_10; 
out1 = add_13; 
delay_1.write(add_8); 
delay_2.write(add_11); 
 



  
 

 

4.2. Results of the Filter Algorithm 

This nested comb filter can produce two sets of equally 
spaced peaks based on frequencies corresponding to the 
delay time of the outer comb filter, and the sum of the 
delay time of both delay lines. Therefore, given any two 
desired principal resonant frequencies, f1 and f2, for the 
combs, the two delay times for the nested delay lines 
can be calculated as follows:  
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del1 =
SR

max( f1, f2)

del2 =
SR
f1
−
SR
f2

                             (5) 

Of our two resulting delay times, del1 becomes the 
delay time in samples which used for the outer filter, 
and del2 becomes the delay time in samples used for the 
inner (nested) filter. Presuming our input gain 
coefficient g is set to 1 and our k coefficient is set to 0, 
the c coefficient controls the peaks based on the lower 
of the two given frequencies (i.e., the frequency 
corresponding to the sum of both the delay times). If c is 
positive, the spectrum is harmonic, if it is negative, the 
spectrum is an odd-harmonic spectrum of half that 
frequency. 

The coefficient k controls the multipliers for the inner 
(nested) comb filter (used here as an allpass) and can be 
varied between the limits of -1 to 1 (exclusive). It acts as 
an interpolator for the peaks of the comb filter as a 
whole. Presuming unity input gain and a positive value 
for c, if the value of k is zero the peaks are spaced at a 
frequency corresponding to the sum of the two delay 
times in samples (the lower of the two given 
frequencies). When k is near 1, the peaks are spaced in a 
harmonic spectrum at a frequency corresponding to the 
delay time of the outer comb filter (the higher of the two 
given frequencies); when k is near -1, the peaks are 
spaced in an odd harmonic spectrum half that frequency. 
If the c coefficient is negative the behaviour of the k 
coefficient will be inverted. 

 
Figure 11. Frequency response of the inharmonic 
comb filter using delays corresponding to 2000Hz and 
1470Hz, with g=1 and c=0.999. This graph shows 
positive and negative values for the interpolation 
coefficient: k=0.8 (top) and k=–0.8 (bottom). 

Dynamically changing k causes the peaks to be both 
interpolated and cross-faded continuously from one 
comb spectrum to the other, producing inharmonic 
spectra similar to those obtained by frequency-shifting; 
it is in this region where the nested comb filter becomes 
most interesting, musically-speaking. An example 
frequency response for both positive and negative 
values of k is shown in figure 11. 

The inharmonicity of the nested comb filter is 
naturally contingent upon the choice of frequency 
values as well as the value of k (see figure 12). In order 
to achieve a more linear perception of the interpolation 
between comb sets, we can use an arctangent function to 
compute k from a given linear value l between -1 and 1: 
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1 > x ≥ 0 : k = arctan l2 ⋅ tan(1)( )
0 < x < −1: k = −arctan l2 ⋅ tan(1)( )

           (6) 

 
Figure 12. A representative inharmonic frequency 
response of the nested comb filter using delays 
calculated from the resonant frequencies 880Hz (A) 
and 370Hz (F#), with g=1 and c=–0.999 and k=0.743. 

4.3. Additional Nested Filters 

Although we did experiment with additional levels of 
nested filters, the results we obtained did not seem to 
offer any significant musical advantage over the nested 
pair of filters described above, neither in terms of 
interesting sonic results, nor computational stability 
during quick parameter changes. So, although this could 
be an interesting idea to explore at some point in the 
future, it did not seem to warrant our continuing in that 
direction at this time. Nevertheless, it goes without 
saying that more complex combinations of inharmonic 
resonators could be created by combining and arranging 
several of these singly-nested inharmonic comb filters in 
series or in parallel.  

5. USES OF INHARMONIC COMB FILTERS  

The nested “inharmonic comb filter” described here can 
be used in almost any context where regular harmonic 
comb filters are used. However they are particularly 
useful when used as resonator effects alongside 
percussion instruments, or “concrète” sound recordings 
of metallic objects. The main advantage of our nested 
comb filter structure is that it can be used to 
dynamically and stably interpolate between harmonic, 
odd-harmonic and inharmonic spectra, thereby easily 
and intuitively allowing musicians to “morph” between 
different sets of resonant timbres which can be defined 
by two predominant pitches within the context of a real-
time performance situation.  



  
 

 

We have already tested out our inharmonic comb 
filter in concert, in the context of a percussion piece by 
one of the authors, in order to provide inharmonic 
pitched resonance to the sound of predominantly non-
pitched percussion instruments. We are providing 
information about this filter to the musical community in 
the form of a set of example patches in the Max/MSP 
environment and would like to encourage others to 
experiment with its use in creative contexts when it 
subjectively seems like it could be an appropriate tool 
for the musical task at hand. 

6. CONCLUSION AND FUTURE WORK 

This is an ongoing project, and we hope to develop 
other useful extensions of this filter in the future. From a 
composer’s perspective, it would be nice to be able to 
provide a list of frequencies and be able to calculate the 
appropriate delay times and coefficients for a closely-
matched inharmonic comb filter, instead of resorting to 
selecting the parameters empirically or by trial and 
error. In addition to the gen~ patches, we have also 
already created a preliminary version of the inharmonic 
comb filter as a standard compiled Max/MSP object. 
We are currently working on improving this object and 
enlarging our set of practical musical examples 
demonstrating this filter, in order to distribute them 
together with the gen~ patch shown above. 
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